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Recap from Last TIme



  

NFAs
● An NFA is a

● Nondeterministic
● Finite
● Automaton

● NFAs have no 
restrictions on how 
many transitions are 
allowed per state.

● They can also use ε-
transitions.

● An NFA accepts a 
string w if there is 
some sequence of 
choices that leads to 
an accepting state.
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Massive Parallelism
● An NFA can be thought of as a DFA that 

can be in many states at once.
● At each point in time, when the NFA 

needs to follow a transition, it tries all 
the options at the same time.

● The NFA accepts if any of the states that 
are active at the end are accepting 
states. It rejects otherwise.



  

New Stuff!



  

Just how powerful are NFAs?



  

NFAs and DFAs
● Any language that can be accepted by a 

DFA can be accepted by an NFA.
● Why?

● Every DFA essentially already is an NFA!
● Question: Can any language accepted by 

an NFA also be accepted by a DFA?
● Surprisingly, the answer is yes!



  

Thought Experiment:
How would you simulate an NFA in 

software?
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The Subset Construction
● This procedure for turning an NFA for a language L into a 

DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different 

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would 

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states 

would be considered accepting in the NFA when using the massive 
parallel intuition.

● There’s an online Guide to the Subset Construction with 
a more elaborate example involving ε-transitions and cases 
where the NFA dies; check that for more details.



  

The Subset Construction
● In converting an NFA to a DFA, the DFA's 

states correspond to sets of NFA states.
● Useful fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can 

result in a DFA that is exponentially larger 
than the original NFA.

● Question to ponder: Can you find a family 
of languages that have NFAs of size n, but 
no DFAs of size less than 2n?



  

Regular Languages
● A language L is called regular when there’s 

a DFA D that recognizes L (that is, (ℒ D) = L).
● Theorem: A language L is regular if and 

only if there’s an NFA N that recognizes it 
(that is, (ℒ N) = L).

● This fact makes it possible to explore regular 
languages by considering either DFAs or 
NFAs.



  

Time-Out for Announcements!



  

Problem Set Six
● Problem Set Five was due today at 1:00PM.

● You can use a late day to extend the deadline to 
Saturday at 1:00PM.

● Problem Set Six goes out today. It’s due 
next Friday at 1:00PM.
● Play around with automata!
● Explore properties of languages!
● See some cool applications!



  

Second Midterm Exam
● Our second midterm exam is Monday, November 

10th from 7 PM – 10 PM.
● Locations TBA.

● Topic focus is Lecture 06 – 13 (functions through 
induction) and PS3 – PS5. Later topics (automata 
forward) will not be tested. Earlier material may be 
covered because course concepts are cumulative.

● We will post a set of practice problems for the second 
midterm on the course website later today if you 
want to get a jump on studying.

● More details next Monday.
● Seating chart will be posted next Wednesday.



  

Other Things
● Please read Keith’s post on Ed about 

regrade requests. Regrade requests that 
don’t conform to the guidelines 
articulated there will likely be dismissed 
without review (which is sssuuuuuupper 
spooooookky).

● The Grade Cruncher is posted on the 
course homepage.



  

Back to CS103!



  

Motivating Example: Numbers



  

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a 

particular string is a number in some numeral system?
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Practical Question: If we can build a 
bunch of finite automata that all recognize 

certain patterns, can we build a single 
finite automaton that recognizes all of 

those patterns?



  

Closure Under Union
● If L₁ and L₂ are languages over the alphabet Σ, the 

language L₁ ∪ L₂ is the language of all strings in 
at least one of the two languages.

● Intuitively, if L₁ and L₂ correspond to languages of 
strings with one of two different patterns, then 
L₁ ∪ L₂ is the language of strings with at least one 
of those patterns.

● Theorem: If L₁ and L₂ are regular, so is L₁ ∪ L₂.



  

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

 

Construct an NFA for L₁ ∪ L₂.
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Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the 

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the 

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.
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Hey, it's De 
Morgan's laws!



  

Concatenation



  

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a 

particular string is a number in some numeral system?
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Question: If you can build finite automata 
to match the first and second halves of a 

pattern, can you build a single finite 
automaton that matches the full pattern?



  

String Concatenation
● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 

denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many 
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y



  

Concatenation
● The concatenation of two languages L₁ and 

L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Let L₁ = { ab, ba } and L₂ = { aa, bb }. What 
is L₁L₂?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Concatenation Example
● Let Σ = { a, b, …, z, A, B, …, Z } and consider 

these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }
● Verb = { Hugs, Juggles, Loves, … }
● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenation
● The concatenation of two languages L₁ 

and L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Two views of L₁L₂:
● The set of all strings that can be made by 

concatenating a string in L₁ with a string in L₂. 
● The set of strings that can be split into two 

pieces: a piece from L₁ and a piece from L₂.
● Theorem: If L₁ and L₂ are regular 

languages, then so is L₁L₂.



  

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

 

Construct an NFA for L₁L₂.
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Numbers
● Suppose we successfully build a finite 

automaton that checks if a string is a 
numbers.

● Now, we want to make a new automaton 
that checks if a string consists of a series 
of numbers.
● Perhaps we’re parsing a data file, for 

example.
● Do we have to start from scratch? Or 

could we reuse what we have?



  

The Kleene Star



  

Lots and Lots of Concatenation
● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.
{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples 
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation
● We can define what it means to “exponentiate” a 

language as follows:
● L0 = {ε}

● Intuition: The only string you can form by gluing no 
strings together is the empty string.

● Notice that {ε} ≠ Ø. Can you explain why?
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?



  

The Kleene Closure
● An important operation on languages is the 

Kleene closure, or Kleene star, which is 
defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     ↔     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible 
ways of concatenating zero or more strings in 
L together, possibly with repetition.

● Question to ponder: What is Ø*?



  

The Kleene Closure
If L = { a, bb }, then L* = {

ε,
a, bb,

aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…
}

Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Theorem: If L is a regular language, so is L*.



  

L = { w ∈ {a, b}* | w has an odd number of a’s and
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Construct an NFA for L*.
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Question: Why add the new 
state out front? Why not 
just make the old start 

state accepting?



  

Closure Properties
● Theorem: If L₁ and L₂ are regular 

languages over an alphabet Σ, then so 
are the following languages:
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These are some of the closure 
properties of the regular languages.

 



  

Next Time
● Regular Expressions

● Building languages from the ground up!
● Thompson’s Algorithm

● A UNIX Programmer in Theoryland.
● Kleene’s Theorem

● From machines to programs!


