

CS103CS103
Fall 2025Fall 2025

Lecture 16:
Finite Automata
Part 3 of 3

Recap from Last TIme

NFAs
● An NFA is a

● Nondeterministic
● Finite
● Automaton

● NFAs have no
restrictions on how
many transitions are
allowed per state.

● They can also use ε-
transitions.

● An NFA accepts a
string w if there is
some sequence of
choices that leads to
an accepting state.

q0 q1

q4 q5

q2

q0q3

q0
start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

Massive Parallelism
● An NFA can be thought of as a DFA that

can be in many states at once.
● At each point in time, when the NFA

needs to follow a transition, it tries all
the options at the same time.

● The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.

New Stuff!

Just how powerful are NFAs?

NFAs and DFAs
● Any language that can be accepted by a

DFA can be accepted by an NFA.
● Why?

● Every DFA essentially already is an NFA!
● Question: Can any language accepted by

an NFA also be accepted by a DFA?
● Surprisingly, the answer is yes!

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

Fill in this row.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

The Subset Construction
● This procedure for turning an NFA for a language L into a

DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states

would be considered accepting in the NFA when using the massive
parallel intuition.

● There’s an online Guide to the Subset Construction with
a more elaborate example involving ε-transitions and cases
where the NFA dies; check that for more details.

The Subset Construction
● In converting an NFA to a DFA, the DFA's

states correspond to sets of NFA states.
● Useful fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially larger
than the original NFA.

● Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

Regular Languages
● A language L is called regular when there’s

a DFA D that recognizes L (that is, (ℒ D) = L).
● Theorem: A language L is regular if and

only if there’s an NFA N that recognizes it
(that is, (ℒ N) = L).

● This fact makes it possible to explore regular
languages by considering either DFAs or
NFAs.

Time-Out for Announcements!

Problem Set Six
● Problem Set Five was due today at 1:00PM.

● You can use a late day to extend the deadline to
Saturday at 1:00PM.

● Problem Set Six goes out today. It’s due
next Friday at 1:00PM.
● Play around with automata!
● Explore properties of languages!
● See some cool applications!

Second Midterm Exam
● Our second midterm exam is Monday, November

10th from 7 PM – 10 PM.
● Locations TBA.

● Topic focus is Lecture 06 – 13 (functions through
induction) and PS3 – PS5. Later topics (automata
forward) will not be tested. Earlier material may be
covered because course concepts are cumulative.

● We will post a set of practice problems for the second
midterm on the course website later today if you
want to get a jump on studying.

● More details next Monday.
● Seating chart will be posted next Wednesday.

Other Things
● Please read Keith’s post on Ed about

regrade requests. Regrade requests that
don’t conform to the guidelines
articulated there will likely be dismissed
without review (which is sssuuuuuupper
spooooookky).

● The Grade Cruncher is posted on the
course homepage.

Back to CS103!

Motivating Example: Numbers

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

 Σ
1, 2, …, 9

0

Σ

start

 Σ

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

0start

,

0, …, 90, …, 90, …, 9

1, …, 9 1, …, 9 1, …, 9

Practical Question: If we can build a
bunch of finite automata that all recognize

certain patterns, can we build a single
finite automaton that recognizes all of

those patterns?

Closure Under Union
● If L₁ and L₂ are languages over the alphabet Σ, the

language L₁ ∪ L₂ is the language of all strings in
at least one of the two languages.

● Intuitively, if L₁ and L₂ correspond to languages of
strings with one of two different patterns, then
L₁ ∪ L₂ is the language of strings with at least one
of those patterns.

● Theorem: If L₁ and L₂ are regular, so is L₁ ∪ L₂.

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

DFA for L₁

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

start Σ Σ Σ

DFA for L₁

NFA for L₂

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

start Σ Σ Σ

DFA for L₁

NFA for L₂

start

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the
language of strings in both L₁ and L₂.

● Intuitively, L₁ ∩ L₂ is the set of strings meeting the
requirements of each language.

● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

L1

Closure Under Intersection

L2

 L1 L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

 L1 ∪ L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

 L1 ∪ L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

Hey, it's De
Morgan's laws!

Concatenation

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

0, …, 9start
.

0, …, 9

0, …, 9

 0, …, 9
–

×
start

1 0 ¹, …, ⁹

–

 ¹, …, ⁹

 ⁰, …, ⁹

Question: If you can build finite automata
to match the first and second halves of a

pattern, can you build a single finite
automaton that matches the full pattern?

String Concatenation
● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,

denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation
● The concatenation of two languages L₁ and

L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Let L₁ = { ab, ba } and L₂ = { aa, bb }. What
is L₁L₂?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Concatenation Example
● Let Σ = { a, b, …, z, A, B, …, Z } and consider

these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }
● Verb = { Hugs, Juggles, Loves, … }
● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation
● The concatenation of two languages L₁

and L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Two views of L₁L₂:
● The set of all strings that can be made by

concatenating a string in L₁ with a string in L₂.
● The set of strings that can be split into two

pieces: a piece from L₁ and a piece from L₂.
● Theorem: If L₁ and L₂ are regular

languages, then so is L₁L₂.

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ

DFA for L₁

start

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start start

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

Numbers
● Suppose we successfully build a finite

automaton that checks if a string is a
numbers.

● Now, we want to make a new automaton
that checks if a string consists of a series
of numbers.
● Perhaps we’re parsing a data file, for

example.
● Do we have to start from scratch? Or

could we reuse what we have?

The Kleene Star

Lots and Lots of Concatenation
● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.
{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation
● We can define what it means to “exponentiate” a

language as follows:
● L0 = {ε}

● Intuition: The only string you can form by gluing no
strings together is the empty string.

● Notice that {ε} ≠ Ø. Can you explain why?
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Closure
● An important operation on languages is the

Kleene closure, or Kleene star, which is
defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* ↔ ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible
ways of concatenating zero or more strings in
L together, possibly with repetition.

● Question to ponder: What is Ø*?

The Kleene Closure
If L = { a, bb }, then L* = {

ε,
a, bb,

aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…
}

Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Theorem: If L is a regular language, so is L*.

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

start

a

a

 b b bb

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

start

a

a

 b b bb

start

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Closure Properties
● Theorem: If L₁ and L₂ are regular

languages over an alphabet Σ, then so
are the following languages:
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These are some of the closure
properties of the regular languages.

Next Time
● Regular Expressions

● Building languages from the ground up!
● Thompson’s Algorithm

● A UNIX Programmer in Theoryland.
● Kleene’s Theorem

● From machines to programs!

